
The Goals of Unit  T e s t i n g :  

Software Unit Testing in an Ada Environment 

Glenn W ?.mock 
PRIOR Data Sciences 

htroduction: 

PRIOR Data Sciences IS currently developing a validation procedure for the Ada 
binding of the Graphical Kernel System (CKS). PRIOR is also producing its own 
version of GKS written in Ada. These major software engineering projects will 
provide an  opportunity for PRIOR to demonstrate a sound approach for software 
testing in an  Ada  environment. 

PRIOR’s GKS/Ada validation capability will be a collection of test programs and 
da ta ,  and  test management !idelines. ‘These products will be used to assess thc 
correctness, completeness, aud efficiency of any GKS/Ada implemen thtion. 
GKS/Ada developers will be able to obtain the validation software for the i r  o w n  
use. PRIOR anticipates tha t  this validation software will eventually be taken o v e r  
by an  independent standards body to provide objective assessments of C;I<S/Ada 
implementations, using an approach similar to the validation testing currently 
applied to  Ada compilers. In the meantime PRIOR will, i f  requested, use this vali- 
dation software to assess CKS/Ada products. This project will require PRIOR to 
offer a well organized, thorough, and .::actical method for high level product test- 
ing. 

T h e  second project, PRIOR’S implementation of GKS using the Ada language, is a 
conventional software engineering task. It represents a large body of Ada code and 
h a s  some interesting testing problems associated with automated testing of graph-  
ics routines. Here PRIOR’S normal test practices which include automated regres- 
sion testing, independent quality assurance, test configuration management ,  arid 
the application of software quality metrics will be employed. 

PRIOR’s software testing rri~thods c>rnphasiw quality enhancenirilt and autom;l tcd  
procedures. These general mcthods apply to s d t w a r r  written in  a n y  progr:rrlinlirig 
language. Ada makes somv aspccts of t w t i n g  casic.r, and iiitrodrtccs ~ 0 1 1 i t ’  t i t . \ \  I OII-  

cerns. T h e w  issues arc addrcsscd hcalow. 

B . 1 . 2 . 1  



suite will have to be carefully organized so that  i t  is both robust, and yet still easy 
to use. 

Testing of GKS/Ada provides an excellent example for our examination of Ada 
unit testing. Comprehensive and sophisticated unit tests are required to test the 
complex functionality. The requirements are well defined by the GKS standard, 
while the design specifications are covered by the proposed standard Ada binding 
for GKS. A unit test plan should test both the GKS requirements, and the 
GKS/Ada binding characteristics, 

Testing Techniques: 

Essentially, the purpose of unit testing is to exerrise the module under test to ver- 
ify that  it performs correctly without producing undesirable side effects. PRIOR 
has developed TESTWARE, a collection of tools which provide a standard metho- 
dology to exercise and validate software modules. TESTWARE is used to  initialize 
the appropriate global data areas and call the module to  be tested with the 
appropriate input parameters. The returned parameters and results are then 
verified. 

The use of a tool such as TESTWARE resiilts in a suite of test cases which has 
significant value for the full life of the associated software module. An additional 
benefit of such a methodology is the ability to measure the degree of test coverage, 
to track the progression of testing, and to schedule software projects with greater 
accuracy. 

0 

The basic component of PRIOR'S TESTWARE is the test driver. The test driver 
provides the framework necessary to r u n  the tests and log the results. For each 
test, the necessary initializations of global data and i n p u t  parameters a re  per- 
formed by the test driver. The module under test is called, executes and returns. 
The test driver must verify the return parameters and validate the global data.  

In  the course of execution of the module, some stubs may be necessary to "fezd" 
the module with the necessary output parameters. It is often desirable to verify 
that the correct stuhs are called arid the appropriate input parameters passed to 
them. For these testing activities it woiild br very convenient to have an Ada coiii- 

pilation system that treated eve ry  call to air rincoriipiled subprograrn as a request 
to interact with thca test operator. 'I'hc Ada systc!ni should make known the  
pararnetor values p;tssetl i n ,  ; i r i t l  pri i i i t  tlic operalor LO sripply valutbs to hc 
rc!tiirric:d. Wc arc! ciirrolitly w r i t i n g  st.iil! ;oiitirios to do  this, bu t  it wori1c i  1)tl 1iiore 
ctfficiont, to havct t,his c l o i i c '  ; i i i t~~ri i~t i ( , ; i l ! ,~ .  Ad:i wiiipilxtioii systciiis wit11 this capa- 
t),jit,y will bc vory  i ~ ~ ~ f i l ' i l l .  



template, the test developer uses standard utilities and adds specialized code to 
perform the necessary initializations and verifications. 

The  test driver is actually driven by the test data. Data is required for initializing 
the global da ta  and specifying the input parameters. Stub data  is comprised of 
s tub  names, expected input parameters, and the required output parameters. 
Additional data  describes the expected output parameters and specifies expected 
changes to globrii data. The separation of data  from the test program eliminates 
the need to  recompile the software when test data  must be changed. An unlimited 
number of test cases can be defined in a single test data  file. 

Standard uti!ities are used to provide the translation from data  to test case. The 
greater the flexibility available in describing test data, the more powerful and easy 
to  use will be the testing tool. The tester should be able to easily specify 
enumerated types, character strings, and floating and fixed point real numbers. A 
range or allowable delta must be available for specifying expected output values 
such as floating point reals. 

A variety of automated test tools such as TESTWARE have been developed for 
languages such as Pascal, C, and FORTRAPI. These often test for errors which 
will not occur in Ada due to the stropg typing, interface checking and run time 
error checking. However, additional testing difficulties arise which relate 
specifically to the Ada language. Testing of tasking operations is necessary to 
identify deadlock and starvation. Pn;ce.'ures for testing generic packages are 
required. Run time performance must also be assesed. 

The  GKS/Ada validation suite poses some additional problems. GKS output is 
often of a form which is most easily validated interactively. As an example, one 
test case may cause a green duck to be drawn upside down in thc lower left corner. 
An important aspect of effective testing is that  the test itself should validate the 
results. If  the test procedure simply describes the correct display the operator may 
not notice i f  the green duck actually appears in the lower right corner. It is prcfer- 
able to have the test software ask: "What colour is the duck?" (Green). "Is i t  
upside down?" (Yes). "1s it in  the lover left corner?" (No). It can be seen from t h i s  
exhrnple that  the task of supplying effective test software is a significant one. 

The overall convideration in the design of TESTWARE is that the tester l \ ; \vt> I I I ~ Y  
necessary tools to easily crcatt! the appropriate environment for runni r ig  t l i e  i i t i i t  

under test arid to ht! ahlo to verify its actions ;rnd rcsults. A t  ttic sari if^ I i n i c l  t i t s  

m u s t  not he rcquired to providc tdioi is  xrnoiirits of d x h  which a r c  not t l i r c n c t  I!. 
rc!lated to the tcst .  

Project Management: 

! i f t ~ ~  thv test, portion of a softwaro projwC is not given the attention or impor- 
t,;incc i t ,  dest!rves. 'l'c!sting is ~isti:dly vicbwrd as something like "the process of 

ORIGINAL PAGf Is 
OF W O R  QUALITY 

B . 1 . 2 . 3  



demonstrating that  errors are not present' when actually errors are inherent in 
software. When software is tested by the person or group which developed it, with 
this attitude, it is not surprising that many errors go undiscovered. 

To be successful testing should be approached with the philosophy expressed by 
Glenford Meyers. 'Testing is the process of executing a program with the intent of 
finding errors'. Testing is really a destructive process. The implementation 
schedule should reflect this and allow the necessary time for testing and correc- 
tions. The  evaluation of test effectiveness s h o J d  be based on the number of errors 
discovered. To be most effective it is best to have an independent test team. 

Significant responsibilities must rest on the test authority. Developing a unit test 
for every module in the system is often not appropriate so the test authority must 
determine which modules should be tested and in which combination and order. 
T h e  selection of appropriate test cases is critical to the success of testing. 

Testing can be performed in an incremental or non-incremental manner. In the 
non-incremental method, all modules are tested seperately, with calls to lower 
modules replaced by stubs. When all modules have been tested, they are 
integrated and tested as a system. This method allows for greater parallelism in 
the unit testing process. 

With incremental testing, the previously tested modules are used by the module 
under test, when available, instead of stubs. This provides more test coverage as 
the earlier modules are more extensively exercised. Also, integration and interface 
errors are discovered earlier and are easier and less expensive to correct. 

Although top down design is often the preferred method of large system design, 
top down implementation and testing are not always preferrable. It is difficult to 
use an  incremental method of testing if top-down implementation is used, as it 
becomes increasingly more difficult to provide the necessary input parameters to 
drive the test cases for the lower level modules as they are added. In addition a 
large number of stubs a.re required. With bottom up incremental testing, fewer 
stubs are necessary and the test driver is directly calling the module under test so 
that  it is easier to force the test conditions. 

Test  cases can be generated by studying the internal logic and paths of the rr~odr~lr  
(white box techniques) and by studying bouiidary conditions and cornbinat ions of 
inpiit classes (black box techniques). Autorriated tools can also be helpful for this. 

* .  I tic rc!;il (!fJwtivenfw of ;in autoniatcd trxt environiritbnt will lw determined by i t s  
dc:g r w  o f  in  tog ral,iori i I I  to t t i  ( 8  soft w ;mi d c! v v l o p  iiirii t. cn vi  ron riirn t. 'I'est iiiod 11 les 
tlavc to  be associat.cd with thf. apptopr ia t~~ sof twar( .  riiotlult~s i l l  tht. library. ('0111- 

rriarids shoiild be avail;hle to pt:rrriit tho library manager to autornatically retest 
appropriate modulos. It is very important to track errors discovered and to have 
the ability to generate statistics and status inforniation concerning the test process. 

8.1.2.4 



Coordination of Test Development: 

A number of GKS test routines have already been written by groups in Europe and 
in the U.S.A. . PRIOR intends to include these in its test suite, and then extend it 
to cover new areas. By making this activity as visible as possible we hope to avoid 
any duplication of effort. 

. 

B. 1.2.5 


